Amoozemeter Studies in Kansas Soils

Philip Schoeneberger,
NSSC, Lincoln
NRCS

Objectives

Overview of K_{sat} field studies in KS:

Background

Scope

Methodology

Results

Background

1) Saturated vs. Unsaturated Flow.

2) Vertical vs. Multi-directional Flow.

Saturated Flow in Soils

 Water moves at different rates depending upon moisture content.

Darcy's Law:
$$Q = -kAI$$

outflow = (hydr. cond.) x (Area) x
(gradient)

- Maximum flow (saturated conditions)

Darcy's Law:
$$Q = K_{sat} A I$$

 $K_{sat} = A I / Q$

History

K_{sat} is satisfactory for engineering, hydrology (septic loading rates, etc.) and a convenient single condition to use as an index (to compare soils).

K_{unsat} is more desirable for irrigation, etc.

Historical Approach to Water Movement in Soils (in SSD)

Vertical movement of water through soil.

 Consistent with the dominant view of soils (point-centric).

- Knew about deep percolation, baseflow (imply lateral flow) but oversimplified.

Methods for vertical K_{sat}

Ex:

- undisturbed cores (lab)
- double ring infiltrometers (field)

Evolution

Multi-directional movement of water through soil.

Many uses: concern is how fast water moves away from application site (downward / lateral)

ANISOTROPY

Downward Flow Is Controlled By The Most Restrictive Layer & Gravity Anisotropy

fine sandy loam Alfiso

6 % slope

ANISOTROPY

Ex.: FOSSTON SOLID WASTE AREA, MN

Kh = HORIZONTAL FLOW.

Kv = VERTICAL FLOW.

 $Kh = 1.2 \times 10^{-3}$

 $Kv = 1.5 \times 10^{-7}$

Kh/Kv = 8000

AQUIFER

VFSL

SCL

AQUITARD CI

FSL

Evolution

Multi-directional movement of water through soil.

Methods: field K_{sat}

- percolation test (obsolete)
- bore-hole permeameters *
- disc infiltrometers
- etc.

Bore-hole Permeameters:

Other Methods

Objective:

Acquire actual (measured) K_{sat} data on major layers of benchmark and other important soils over the mid-term.

(Currently ≈ 1/3 of Benchmark soils mapped in KS)

Why?:

- Augment Type Location information.
- Incorporates / addresses real world conditions.
- Provide hard data

(not extrapolated estimates from cores, algorithms – none address mineralogy or structure).

- Not programmatically burdensome.

(limited annual impact; efficiency on site).

Results:

Seasonal Differences: Wet vs. Dry

Bavaria Soil (fine, smectitic, mesic, Leptic Natrustoll)			Saturated Hydraulic Conductivity Ksat (cm / hour)		
			Wet Season (5/6/98)	Dry Season (8/24/99)	
Soil Horizon	Depth (cm)	Field Texture	X C.V. (%) n = 3	X C.V. (%) n = 4	
Ap + An	20	silty clay loam	0.122 (102 %)	4.630 (105 %)	
Btny	46	silty clay	0.075 (146 %)	0.262 (43 %)	
Btn	77	silty clay loam	0.060 (135 %) n = 4	0.108 (87 %)	

Pratt Soil (sandy, mixed, mesic Lamellic Haplustalfs) (S05KS155-001)			Saturated Hydraulic Conductivity Ksat (cm / hour)
Soil Horizon	Depth (cm)	Texture	C.V. (%) n = 5 (unless otherwise noted)
Ар	18	fine sand	13.218 (50 %)
Bt	36	loamy fine sand	5.554 (78 %)
E & Bt1	60	sand	9.553 (42 %)
E & Bt2	100	sand	16.640 (34 %)
C1	160	fine sand	18.953 (30 %) $n = 3$

Heavy textured soils.

Pawnee S2006KS131-001 Nemaha Co., KS			Saturated Hydraulic Conductivity K _{sat} (cm/hour)
Soil Horizon	Depth (cm)	Lab Texture	X C.V. (%) n = 5
Ар	18	silt loam	0.092 (46 %)
Bt3	63	clay loam	0.021 (107 %)
Btk	115	clay loam	0.008 (47 %)
ВС	150	clay loam	0.030 (82 %)

Limitations: Ex.: At / below water table

Thin layers (e.g. differentially hardened layers in sandy loam till)